Author Affiliations
Abstract
1 Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
2 Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, Grenoble and Toulouse, France
3 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
4 Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, Paris, France
This publisher’s note corrects the author name spelling in Photon. Res.8, A50 (2020)10.1364/PRJ.401872.
Photonics Research
2022, 10(10): 2447
Author Affiliations
Abstract
1 Beijing Academy of Quantum Information Sciences, Beijing, China
2 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
3 School of Materials Science and Engineering, Peking University, Beijing, China
4 Research Center for Wide Gap Semiconductor, Peking University, Beijing, China
5 Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
6 Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen, China
7 CNR NANOTEC, Campus Ecotekne, Lecce, Italy
8 State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
9 Frontier Science Center for Quantum Information, Beijing, China
10 Beijing Innovation Center for Future Chips, Tsinghua University, Beijing, China
The quest for realizing novel fundamental physical effects and practical applications in ambient conditions has led to tremendous interest in microcavity exciton polaritons working in the strong coupling regime at room temperature. In the past few decades, a wide range of novel semiconductor systems supporting robust exciton polaritons have emerged, which has led to the realization of various fascinating phenomena and practical applications. This paper aims to review recent theoretical and experimental developments of exciton polaritons operating at room temperature, and includes a comprehensive theoretical background, descriptions of intriguing phenomena observed in various physical systems, as well as accounts of optoelectronic applications. Specifically, an in-depth review of physical systems achieving room temperature exciton polaritons will be presented, including the early development of ZnO and GaN microcavities and other emerging systems such as organics, halide perovskite semiconductors, carbon nanotubes, and transition metal dichalcogenides. Finally, a perspective of outlooking future developments will be elaborated.
microcavity exciton polariton Bose–Einstein condensation exciton binding energy quantum simulation nonequilibrium dynamics 
Photonics Insights
2022, 1(1): R04
作者单位
摘要
浙江大学流体动力与机电系统国家重点实验室,浙江 杭州 310058

浸没式光刻是实现5 nm以上线宽高性能超大规模集成电路产品制造的关键技术。相比传统干式光刻,浸没式光刻需在末端物镜和硅片之间填充浸没液体。浸没液体的高折射率可以提高光刻机的数值孔径和曝光分辨率,但也对浸没式光刻的污染控制提出了挑战。为了减少曝光缺陷,提升曝光良率,需要对浸液系统中的各类污染物进行高精度检测与精准控制,以达到超洁净流控。从浸没式光刻技术的原理出发对比分析了干式光刻与浸没式光刻,概述了浸没式光刻机的发展历程,着重介绍了浸没式光刻浸液系统中几种污染物的产生机理、检测方法和控制手段,为进一步提高浸没式光刻芯片的曝光良品率提供了理论基础。

浸没式光刻机 浸没系统 污染机理 污染检测 污染控制 
激光与光电子学进展
2022, 59(9): 0922014
Author Affiliations
Abstract
1 Nanyang Technological University, School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, Singapore
2 MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d’Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore
3 Tsinghua University, State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Beijing, China
4 Beijing Academy of Quantum Information Sciences, Beijing, China
5 Tsinghua University, Beijing Innovation Center for Future Chips, Beijing, China
Optical parametric oscillators (OPOs) have been widely applied in spectroscopy, squeezed light, and correlated photons, as well as quantum information. Conventional OPOs usually suffer from a high power threshold limited by weak high-order nonlinearity in traditional pure photonic systems. Alternatively, polaritonic systems based on hybridized exciton–photon quasi-particles exhibit enhanced optical nonlinearity by dressing photons with excitons, ensuring highly nonlinear operations with low power consumption. We report an on-chip perovskite polariton parametric oscillator with a low threshold. Under the resonant excitation at a range of angles, the signal at the ground state is obtained, emerging from the polariton–polariton interactions at room temperature. Our results advocate a practical way toward integrated nonlinear polaritonic devices with low thresholds.
inorganic perovskite semiconductors exciton–polaritons parametric oscillators four-wave mixing 
Advanced Photonics
2021, 3(5): 055003
Author Affiliations
Abstract
1 Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
2 Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, Grenoble and Toulouse, France
3 Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
4 Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, Paris, France

High magnetic field spectroscopy has been performed on lead chloride-based perovskite, a material that attracts significant interest for photovoltaic and photonic applications within the past decades. Optical properties being mainly driven by the exciton states, we have measured the fundamental parameters, such as the exciton binding energy, effective mass, and dielectric constant. Among the inorganic halide perovskites, CsPbCl3 owns the largest exciton binding energy and effective mass. This blue emitting compound has also been compared with lower band gap energy perovskites and other semiconducting phases, showing comparable band gap dependences for binding energy and Bohr radius.

Photonics Research
2020, 8(10): A50
苏锐 1,2,*郭欢 1,2范一松 1彭方 1郭强 1
作者单位
摘要
1 中国科学院安徽光学精密机械研究所,安徽重点光子器件与材料实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
针对现阶段激光器控制系统集成度不足,功能相对单一的现象,基于STM32设计了一种智能控制系统。系统搭载了基于EMWIN的人机交互界面,实现了脉冲激光器触摸屏控制。基于开发系统的高频时钟,产生多路脉冲宽度调制信号,实现了脉冲激光器的高精度控制:抽运电压0~1000 V连续可调;脉冲频率1~200 Hz多档位可调;脉冲宽度0~1000 μs连续可调,精度为20 μs。 电压与脉宽的调节均支持微调与粗调。系统搭载了温度传感器和超声波测距模块,能实时监控激光器工作温度和划分安全操作区域。同时设计了信号测量模块,采样频率为1~100 kHz。设计实现了激光器控制和测量的一体化,及激光器工作的过程控制与安全监控。
激光技术 控制系统 人机交互 信号测量 laser techniques control system STM32 STM32 human-computer interaction signal measurement 
量子电子学报
2019, 36(2): 161
叶庆 1,2,*范一松 1,3卞进田 1,2俞峰 1,2苏锐 3
作者单位
摘要
1 国防科技大学 脉冲功率激光技术国家重点实验室, 合肥 230037
2 先进激光技术安徽省实验室, 合肥 230037
3 中国科学院合肥物质科学研究院 安徽光学精密机械研究所, 合肥 230031
研制了脉冲宽度大、单脉冲能量大的绿光激光器, 其中脉冲重复频率与高速相机帧频同步, 且光纤耦合输出.激光器采用平凸非稳腔结构, 灯泵浦Nd∶YAG晶体, KTP晶体内腔倍频, 被动调Q方式, 实现了最大重复频率为300 Hz、脉冲宽度为70 μs、平均功率为38 W、单脉冲能量为126.7 mJ、光束发散角为3.5 mrad的532 nm激光输出.将该激光耦合到芯径为800 μm的光纤中进行水下实验, 耦合效率达到92%.
灯泵激光器 激光照明 KTP内腔倍频 水下光源 被动调Q 光纤耦合 Flash-lamp pumped laser Laser illumination Intracavity frequency double by KTP crystal Underwater light source Passive Q-switching Fiber coupling 
光子学报
2018, 47(11): 1114004
袁纵横 1,2,*苏睿 2黄静 1
作者单位
摘要
1 贵州民族大学 信息工程学院,贵州 贵阳 550025
2 桂林电子科技大学 电子工程与自动化学院, 广西 桂林 541004
提出了一种有双谐振频率和较宽谐振区域的纳米天线结构。利用有限积分法,计算了由金构成的表面等离子体光学纳米天线的谐振特性,研究了在谐振区域内谐振频率和谐振电场随位置变化的情况。结果表明,在不同谐振频率下存在两个谐振电场,在中间区域,谐振频率为270 THz,在侧边间隙区,谐振频率为390 THz;激励源为1 V/m时,其谐振电场均达700 V/m以上,是普通偶极子天线的18倍;第一谐振区域的谐振场集中在10~25 nm,在此范围内,谐振电场较大、谐振频率几乎不变;加上折射率为1.5 的玻璃衬底后,天线的谐振电场达到800 V/m,与没有衬底时相比,谐振频率变化很小。研究的天线结构在高性能的光学纳米天线、太阳能电池和生物传感器方面有潜在的应用价值。
表面等离子体 谐振 纳米光学天线 Drudel 模型 surface plasmon resonance optical nano-antenna Drudel model 
光学 精密工程
2013, 21(6): 1518
作者单位
摘要
四川大学物理学院辐射物理及技术教育部重点实验室, 成都 610064
本实验室分别选用无水乙醇和丙酮溶液为溶剂制成两种类型的辐射变色膜, 并对这两种辐射变色膜进行了60Co γ射线与紫外线辐照, 研究不同溶剂对辐射变色膜吸收剂量的影响。实验发现, 60Co γ射线与紫外线辐照后, 使用丙酮作溶剂的辐射变色膜变色效果比无水乙醇的更加明显。在相同的辐照剂量下, 使用丙酮作为溶剂的变色膜比用无水乙醇的光谱吸收峰(680 nm)值平均高65.5%。γ射线辐照时, 用丙酮作为溶剂的辐射变色膜变色的辐照剂量下限为0.5 Gy, 而用无水乙醇做为溶剂的为1 Gy; 紫外辐照时, 用丙酮为溶剂的辐射变色膜吸收峰处吸收剂量的线性响应区间为0~6×100 μJ/cm2, 而用无水乙醇做为溶剂的为0~36×100 μJ/cm2。
无水乙醇 丙酮 辐射变色膜 吸收剂量 辐照剂量 anhydrous alcohol acetone radiochromic films absorb dose radiation dose 
光散射学报
2012, 24(4): 406
郭英杰 1,*蒋波 2何捷 1陈家胜 1[ ... ]苏锐 1
作者单位
摘要
1 四川大学 物理学院, 辐射物理及技术国家教育部重点实验室, 成都610064
2 四川大学 国家生物医学材料工程技术研究中心, 成都 610064
3 成都市产品质量监督检验院, 成都 610041
用J-2.5质子静电加速器提供的质子束, 对研制的一种高灵敏度新型辐射变色膜进行质子辐射响应研究。该变色膜以聚乙烯醇缩聚物为基质, 以类丁二炔化合物为有机染色材料, 质子能量为2.0 MeV, 辐照注量为1.0×1010~1.0×1012 cm-2。用光谱响应测试薄膜的辐射效应显示: 变色薄膜颜色由粉红渐变为蓝色, 并随着辐照剂量的增加而逐渐加深; 用图像分析仪分析辐照后靶材的光密度发现, 图像的光密度随聚焦斑距离的增大而减小; 用分光光度计测试其吸收光谱发现, 主吸收峰值出现在660 nm附近, 且吸收峰处的响应吸光度与质子注量具有较好的线性关系; 对新型变色薄膜辐照后持续效应的研究表明, 变色膜辐照后续效应微弱, 辐照后可以立即测量, 且对测量环境变化不敏感。
变色薄膜 质子辐照 吸光度响应 质子剂量计 radiochromic film proton irradiation absorbency response proton dosimeter 
强激光与粒子束
2011, 23(2): 517

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!